Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242697

RESUMO

Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , 60598 , Camundongos , Masculino , Feminino , Animais , Acetato de Desoxicorticosterona/farmacologia , Núcleo Solitário/fisiologia , Células Receptoras Sensoriais , Pressão Sanguínea/fisiologia , Fenilefrina/farmacologia , Canais Iônicos
2.
Front Neurosci ; 17: 1223733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638323

RESUMO

Background: Pulmonary hypertension (PH), characterized by elevated pulmonary pressure and right heart failure, is a systemic disease involving inappropriate sympathetic activation and an impaired gut-brain-lung axis. Global overexpression of angiotensin converting enzyme 2 (ACE2), a cardiopulmonary protective enzyme of the renin-angiotensin system, attenuates PH induced by chronic hypoxia. Neurons within the paraventricular nucleus of the hypothalamus (PVN) that synthesize corticotropin-releasing hormone (CRH) are activated by stressors, like hypoxia, and this activation augments sympathetic outflow to cardiovascular tissues. These data coupled with our observations that ACE2 overexpression in CRH cells (CRH-ACE2KI mice) decreases anxiety-like behavior via suppression of hypothalamic-pituitary-adrenal (HPA) axis activity by decreasing CRH synthesis, led us to hypothesize that selective ACE2 overexpression in CRH neurons would protect against hypoxia-induced PH. Methods: CRH-ACE2KI and WT male and female mice were exposed to chronic hypoxia (10%O2) or normoxia (21%O2) for 4 weeks in a ventilated chamber with continuous monitoring of oxygen and carbon dioxide concentrations (n = 7-10/group). Pulmonary hemodynamics were measured with Millar pressure catheters then tissues were collected for histological analyses. Results: Chronic hypoxia induced a significant increase (36.4%) in right ventricular (RV) systolic pressure (RVSP) in WT mice, which was not observed in CRH-ACE2KI mice. No significant differences in RVSP were observed between male and female mice in any of the groups. Conclusion: Overexpression of ACE2 in CRH cells was protective against hypoxia-induced PH. Since the majority of expression of CRH is in brain nuclei such as paraventricular nucleus of the hypothalamus (PVN) and/or central nucleus of the amygdala (CeA) these data indicate that the protective effects of ACE2 are, at least in part, centrally mediated. This contributes to the systemic nature of PH disease and that CRH neurons may play an important role in PH.

3.
bioRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425814

RESUMO

Interoception broadly refers to awareness of one's internal milieu. Vagal sensory afferents monitor the internal milieu and maintain homeostasis by engaging brain circuits that alter physiology and behavior. While the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferents and corresponding brain circuits that shape perception of the viscera are largely unknown. Here, we use mice to parse neural circuits subserving interoception of the heart and gut. We determine vagal sensory afferents expressing the oxytocin receptor, hereafter referred to as NDGOxtr, send projections to the aortic arch or stomach and duodenum with molecular and structural features indicative of mechanosensation. Chemogenetic excitation of NDGOxtr significantly decreases food and water consumption, and remarkably, produces a torpor-like phenotype characterized by reductions in cardiac output, body temperature, and energy expenditure. Chemogenetic excitation of NDGOxtr also creates patterns of brain activity associated with augmented hypothalamic-pituitary-adrenal axis activity and behavioral indices of vigilance. Recurrent excitation of NDGOxtr suppresses food intake and lowers body mass, indicating that mechanosensation of the heart and gut can exert enduring effects on energy balance. These findings suggest that the sensation of vascular stretch and gastrointestinal distention may have profound effects on whole body metabolism and mental health.

4.
Nutrients ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771242

RESUMO

Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.


Assuntos
Hipertensão , Paladar , Humanos , Paladar/fisiologia , Apetite/fisiologia , Cloreto de Sódio na Dieta/efeitos adversos , Sódio , Hipertensão/etiologia
5.
Pulm Circ ; 12(1): e12015, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506083

RESUMO

Recent evidence suggests pulmonary hypertension (PH), a disease of the pulmonary vasculature actually has multiorgan pathophysiology and perhaps etiology. Herein, we demonstrated that fecal matter transplantation from angiotensin-converting enzyme 2 overexpressing mice counteracted the effects of chronic hypoxia to prevent pulmonary hypertension, neuroinflammation, and gut dysbiosis in wild type recipients.

6.
Appetite ; 175: 106054, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447163

RESUMO

Maintaining homeostasis while navigating one's environment involves accurately assessing and interacting with external stimuli while remaining consciously in tune with internal signals such as hunger and thirst. Both atypical social interactions and unhealthy eating patterns emerge as a result of dysregulation in factors that mediate the prioritization and attention to salient stimuli. Oxytocin is an evolutionarily conserved peptide that regulates attention to exteroceptive and interoceptive stimuli in a social environment by functioning in the brain as a modulatory neuropeptide to control social behavior, but also in the periphery as a hormone acting at oxytocin receptors (Oxtr) expressed in the heart, gut, and peripheral ganglia. Specialized sensory afferent nerve endings of Oxtr-expressing nodose ganglia cells transmit cardiometabolic signals via the Vagus nerve to integrative regions in the brain that also express Oxtr(s). These brain regions are influenced by vagal sensory pathways and coordinate with external events such as those demanding attention to social stimuli, thus the sensations related to cardiometabolic function and social interactions are influenced by oxytocin signaling. This review investigates the literature supporting the idea that oxytocin mediates the interoception of cardiovascular and gastrointestinal systems, and that the modulation of this awareness likewise influences social cognition. These concepts are then considered in relation to Autism Spectrum Disorder, exploring how atypical social behavior is comorbid with cardiometabolic dysfunction.

7.
Front Physiol ; 13: 841078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399269

RESUMO

The brain maintains cardiovascular homeostasis, in part, via the arterial baroreflex which senses changes in blood pressure (BP) at the level of the aortic arch. Sensory afferents innervating the aortic arch employ baroreceptors to convert stretch exerted on the arterial wall into action potentials carried by the vagus nerve to second order neurons residing within the nucleus of the solitary tract (NTS). Although the baroreflex was described more than 80 years ago, the specific molecular, structural, and functional phenotype of the baroreceptors remain uncharacterized. This is due to the lack of tools that provide the genetic and target organ specificity that is required to selectively characterize baroreceptor afferents. Here, we use a novel approach to selectively target baroreceptors. Male mice on a C57BL/6J background were anesthetized with isoflurane, intubated, and artificially ventilated. Following sternotomy, the aortic arch was exposed, and a retrograde adeno-associated virus was applied to the aortic arch to direct the expression of channelrhoropsin-2 (ChR2) and/or tdTomato (tdTom) to sensory afferents presumably functioning as baroreceptors. Consistent with the structural characteristics of arterial baroreceptors, robust tdTom expression was observed in nerve endings surrounding the aortic arch, within the fibers of the aortic depressor and vagus nerves, cell bodies of the nodose ganglia (NDG), and neural projections to the caudal NTS (cNTS). Additionally, the tdTom labeled cell bodies within the NDG also expressed mRNAs coding for the mechanically gated ion channels, PIEZO-1 and PIEZO-2. In vitro electrophysiology revealed that pulses of blue light evoked excitatory post-synaptic currents in a subset of neurons within the cNTS, suggesting a functional connection between the labeled aortic arch sensory afferents and second order neurons. Finally, the in vivo optogenetic stimulation of the cell bodies of the baroreceptor expressing afferents in the NDG produced robust depressor responses. Together, these results establish a novel approach for selectively targeting sensory neurons innervating the aortic arch. This approach may be used to investigate arterial baroreceptors structurally and functionally, and to assess their role in the etiology or reversal of cardiovascular disease.

8.
STAR Protoc ; 3(1): 101160, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199030

RESUMO

Here, we present a step-by-step protocol for three-dimensional reconstruction of astrocyte morphology, applied to the central amygdala oxytocin receptor-expressing astrocytes. This includes RNAse-free perfusion, combination of RNAscope and immunohistochemistry, and confocal imaging. This protocol provides detailed information about tissue handling and a comprehensive description of the RNAScope technique to label rat and mouse oxytocin receptor mRNA. We also describe three-dimensional reconstruction that allows the assessment of more than 70 different cellular parameters, powerful for studying astrocyte morphology and astrocyte-astrocyte interactions. For complete details on the use and execution of this protocol, please refer to Wahis et al. (2021) and Althammer et al. (2020).


Assuntos
Astrócitos , Núcleo Central da Amígdala , Animais , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Camundongos , Ratos , Receptores de Ocitocina/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-36618014

RESUMO

Much of the centrally available oxytocin (OT) is synthesized in magnocellular neurons located in the paraventricular nucleus of the hypothalamus. This same area is home to parvocellular corticotropin-releasing hormone (CRH) synthesizing neurons that regulate activation of the hypothalamic-pituitary-adrenal (HPA) axis. A large body of data indicates that complex interactions between these systems inextricably link central OT signaling with the neuroendocrine response to stress. This review focuses on a small but diverse set of cellular and synaptic mechanisms that have been proposed to underlie intrahypothalamic OT/CRF interactions during the response to acute stress.

10.
Alcohol Clin Exp Res ; 46(2): 194-206, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34964139

RESUMO

BACKGROUND: Individuals with alcohol use disorder (AUD) exhibit a disruption of social behavior and dysregulation of oxytocin signaling in the brain, possibly reflecting decreased activation of oxytocin receptors (OxTRs) in reward pathways in response to social stimuli. We hypothesize that daily binge ethanol intake causes a deficit in social reward and oxytocin signaling in the ventral tegmental area (VTA). METHODS: After 9 weeks of daily binge ethanol intake (blood ethanol concentration >80 mg%), OxTR-cre mice underwent conditioned place preference for social reward. Separate groups of mice were tested for the effects of binge ethanol on voluntary social interactions, food reward, locomotion, and anxiety-like behaviors. A subset of mice underwent transfection of OxTR-expressing VTA neurons (VTAOxtr ) with a light-sensitive opsin, followed by operant training to respond to light delivered to VTA. RESULTS: Ethanol-naïve male mice increased the time spent on the side previously paired with novel mice while ethanol-treated mice did not. Binge ethanol did not affect conditioned place preference for food reward in males, but this response was weakened in ethanol-treated females. Ethanol treatment also caused a sex-specific impairment of voluntary social interactions with novel mice. There were minimal differences between groups in measures of anxiety and locomotion. Ethanol-naïve mice had significantly greater operant responding for activation of VTAOxtr than sham-transfected mice but ethanol-treated mice did not. There was no difference in the number of VTAOxtr after binge ethanol. CONCLUSIONS: Daily binge ethanol causes social reward deficits that cannot be explained by nonspecific effects on other behaviors, at least in males. Only ethanol-naïve mice exhibited positive reinforcement caused by activation of VTAOxtr while daily binge ethanol did not alter the number of VTAOxtr in either males or females. Thus, subtle dysregulation of VTAOxtr function may be related to the social reward deficits caused by daily binge ethanol.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Ocitocina/metabolismo , Transtornos do Comportamento Social , Animais , Feminino , Humanos , Masculino , Camundongos , Recompensa , Fatores Sexuais , Área Tegmentar Ventral/efeitos dos fármacos
11.
Cardiovasc Res ; 118(3): 883-896, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33723600

RESUMO

AIMS: These studies evaluate whether angiotensin type-2 receptors (AT2Rs) that are expressed on γ-aminobutyric acid (GABA) neurons in the nucleus of the solitary tract (NTS) represent a novel endogenous blood pressure-lowering mechanism. METHODS AND RESULTS: Experiments combined advanced genetic and neuroanatomical techniques, pharmacology, electrophysiology, and optogenetics in mice to define the structure and cardiovascular-related function of NTS neurons that contain AT2R. Using mice with Cre-recombinase directed to the AT2R gene, we discovered that optogenetic stimulation of AT2R-expressing neurons in the NTS increases GABA release and blood pressure. To evaluate the role of the receptor, per se, in cardiovascular regulation, we chronically delivered C21, a selective AT2R agonist, into the brains of normotensive mice and found that central AT2R activation reduces GABA-related gene expression and blunts the pressor responses induced by optogenetic excitation of NTS AT2R neurons. Next, using in situ hybridization, we found that the levels of Agtr2 mRNAs in GABAergic NTS neurons rise during experimentally induced hypertension, and we hypothesized that this increased expression may be exploited to ameliorate the disease. Consistent with this, final experiments revealed that central administration of C21 attenuates hypertension, an effect that is abolished in mice lacking AT2R in GABAergic NTS neurons. CONCLUSION: These studies unveil novel hindbrain circuits that maintain arterial blood pressure, and reveal a specific population of AT2R that can be engaged to alleviate hypertension. The implication is that these discrete receptors may serve as an access point for activating an endogenous depressor circuit.


Assuntos
Hipertensão , Receptor Tipo 2 de Angiotensina/metabolismo , Núcleo Solitário , Animais , Hipertensão/genética , Hipertensão/metabolismo , Imidazóis , Camundongos , Neurônios/metabolismo , Núcleo Solitário/metabolismo , Sulfonamidas , Tiofenos
12.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250900

RESUMO

Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.


Oxytocin is often referred to as a 'love hormone' because it can be released during activities such as hugging, snuggling, or sex. Reality, of course, can be a bit more complicated. In the brain, oxytocin can have powerful and diverse effects on mood, stress, anxiety, and social interactions. In the body it helps regulate fluid balance, promotes contractions during childbirth, and stimulates the letdown of milk during breastfeeding. Much of the oxytocin produced in both humans and rodents comes from oxytocin-synthetizing magnocellular neurons located in an area of the brain called the hypothalamus. These very specialized neurons have separate, but overlapping, mechanisms for releasing oxytocin into the brain and into the rest of the body. This means that while certain signals cause the neurons to release oxytocin into the body and the brain at the same time, others can cause them to release the hormone preferentially into the body or the brain. Sheng et al. wanted to better understand how these different release mechanisms work, and, in particular, to learn more about how release of oxytocin into the brain is regulated. This is important, because when oxytocin is given as a medicine, much of it fails to reach the brain. A lot of the oxytocin that acts in the brain is released from a specific part of the oxytocin-synthesizing magnocellular neurons called the dendrites. When these neurons are stimulated, calcium enters the dendrites, triggering the release of oxytocin directly into the brain. Sheng et al. used electrical and optical tools on brain tissue extracted from mice to measure how different signals change the amount of calcium that enters the dendrites of oxytocin-synthesizing magnocellular neurons in response to a consistent stimulus. The results showed that increasing the osmolarity, the amount of water-soluble particles that cannot spontaneously cross the cell membrane, in the liquid surrounding the neurons reduced the amount of calcium that flowed into the dendrites during stimulation. Meanwhile, decreasing osmolarity had the opposite effect. Sheng et al. also found that the influx of calcium induced by stimulating the neurons can be strongly regulated by activating receptors in the dendrites that detect a common molecule in the brain called GABA. This occurs even absent a change in osmolarity. These results shed light on some of the physiological processes that control the release of oxytocin into the brain. Understanding these processes is a necessary step towards developing new drugs intended to regulate levels of oxytocin in the brain. Such drugs could be useful in the treatment of several types of mental health disorders.


Assuntos
Sinalização do Cálcio , Dendritos/metabolismo , Osmorregulação , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Potenciais de Ação , Animais , Impedância Elétrica , Feminino , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Núcleo Hipotalâmico Paraventricular/citologia , Receptores de GABA-A/metabolismo , Fatores de Tempo
13.
J Neurosci ; 41(21): 4641-4657, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33858944

RESUMO

The hypothalamic paraventricular nucleus (PVN) controls neuroendocrine axes and the autonomic nervous system to mount responses that cope with the energetic burdens of psychological or physiological stress. Neurons in the PVN that express the angiotensin Type 1a receptor (PVNAgtr1a) are implicated in neuroendocrine and autonomic stress responses; however, the mechanism by which these neurons coordinate activation of neuroendocrine axes with sympathetic outflow remains unknown. Here, we use a multidisciplinary approach to investigate intra-PVN signaling mechanisms that couple the activity of neurons synthesizing corticotropin-releasing-hormone (CRH) to blood pressure. We used the Cre-Lox system in male mice with in vivo optogenetics and cardiovascular recordings to demonstrate that excitation of PVNAgtr1a promotes elevated blood pressure that is dependent on the sympathetic nervous system. Next, neuroanatomical experiments found that PVNAgtr1a synthesize CRH, and intriguingly, fibers originating from PVNAgtr1a make appositions onto neighboring neurons that send projections to the rostral ventrolateral medulla and express CRH type 1 receptor (CRHR1) mRNA. We then used an ex vivo preparation that combined optogenetics, patch-clamp electrophysiology, and Ca2+ imaging to discover that excitation of PVNAgtr1a drives the local, intra-PVN release of CRH, which activates rostral ventrolateral medulla-projecting neurons via stimulation of CRHR1(s). Finally, we returned to our in vivo preparation and found that CRH receptor antagonism specifically within the PVN lowered blood pressure basally and during optogenetic activation of PVNAgtr1a Collectively, these results demonstrate that angiotensin II acts on PVNAgtr1a to conjoin hypothalamic-pituitary-adrenal axis activity with sympathetically mediated vasoconstriction in male mice.SIGNIFICANCE STATEMENT The survival of an organism is dependent on meeting the energetic demands imposed by stressors. This critical function is accomplished by the CNS's ability to orchestrate simultaneous activities of neurosecretory and autonomic axes. Here, we unveil a novel signaling mechanism within the paraventricular nucleus of the hypothalamus that links excitation of neurons producing corticotropin-releasing-hormone with excitation of neurons controlling sympathetic nervous system activity and blood pressure. The implication is that chronic stress exposure may promote cardiometabolic disease by dysregulating the interneuronal cross-talk revealed by our experiments.


Assuntos
Pressão Sanguínea/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Vasoconstrição/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Masculino , Camundongos , Neurônios/fisiologia
14.
J Neurosci ; 41(7): 1429-1442, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33328294

RESUMO

Blood pressure is controlled by endocrine, autonomic, and behavioral responses that maintain blood volume and perfusion pressure at levels optimal for survival. Although it is clear that central angiotensin type 1a receptors (AT1aR; encoded by the Agtr1a gene) influence these processes, the neuronal circuits mediating these effects are incompletely understood. The present studies characterize the structure and function of AT1aR neurons in the lamina terminalis (containing the median preoptic nucleus and organum vasculosum of the lamina terminalis), thereby evaluating their roles in blood pressure control. Using male Agtr1a-Cre mice, neuroanatomical studies reveal that AT1aR neurons in the area are largely glutamatergic and send projections to the paraventricular nucleus of the hypothalamus (PVN) that appear to synapse onto vasopressin-synthesizing neurons. To evaluate the functionality of these lamina terminalis AT1aR neurons, we virally delivered light-sensitive opsins and then optogenetically excited or inhibited the neurons while evaluating cardiovascular parameters or fluid intake. Optogenetic excitation robustly elevated blood pressure, water intake, and sodium intake, while optogenetic inhibition produced the opposite effects. Intriguingly, optogenetic excitation of these AT1aR neurons of the lamina terminalis also resulted in Fos induction in vasopressin neurons within the PVN and supraoptic nucleus. Further, within the PVN, selective optogenetic stimulation of afferents that arise from these lamina terminalis AT1aR neurons induced glutamate release onto magnocellular neurons and was sufficient to increase blood pressure. These cardiovascular effects were attenuated by systemic pretreatment with a vasopressin-1a-receptor antagonist. Collectively, these data indicate that excitation of lamina terminalis AT1aR neurons induces neuroendocrine and behavioral responses that increase blood pressure.SIGNIFICANCE STATEMENT Hypertension is a widespread health problem and risk factor for cardiovascular disease. Although treatments exist, a substantial percentage of patients suffer from "drug-resistant" hypertension, a condition associated with increased activation of brain angiotensin receptors, enhanced sympathetic nervous system activity, and elevated vasopressin levels. The present study highlights a role for angiotensin Type 1a receptor expressing neurons located within the lamina terminalis in regulating endocrine and behavioral responses that are involved in maintaining cardiovascular homeostasis. More specifically, data presented here reveal functional excitatory connections between angiotensin-sensitive neurons in the lamina terminals and vasopressin neurons in the paraventricular nucleus of the hypothalamus, and further indicate that activation of this circuit raises blood pressure. These neurons may be a promising target for antihypertensive therapeutics.


Assuntos
Angiotensinas/farmacologia , Arginina Vasopressina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Núcleo Basal de Meynert/efeitos dos fármacos , Núcleo Basal de Meynert/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores de Vasopressinas/efeitos dos fármacos , Sódio na Dieta
15.
Curr Hypertens Rep ; 22(7): 48, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661792

RESUMO

PURPOSE OF REVIEW: To review recent data that suggest opposing effects of brain angiotensin type-1 (AT1R) and type-2 (AT2R) receptors on blood pressure (BP). Here, we discuss recent studies that suggest pro-hypertensive and pro-inflammatory actions of AT1R and anti-hypertensive and anti-inflammatory actions of AT2R. Further, we propose mechanisms for the interplay between brain angiotensin receptors and neuroinflammation in hypertension. RECENT FINDINGS: The renin-angiotensin system (RAS) plays an important role in regulating cardiovascular physiology. This includes brain AT1R and AT2R, both of which are expressed in or adjacent to brain regions that control BP. Activation of AT1R within those brain regions mediate increases in BP and cause neuroinflammation, which augments the BP increase in hypertension. The fact that AT1R and AT2R have opposing actions on BP suggests that AT1R and AT2R may have similar opposing actions on neuroinflammation. However, the mechanisms by which brain AT1R and AT2R mediate neuroinflammatory responses remain unclear. The interplay between brain angiotensin receptor subtypes and neuroinflammation exacerbates or protects against hypertension.


Assuntos
Hipertensão , Receptor Tipo 2 de Angiotensina , Angiotensina I , Encéfalo/metabolismo , Humanos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Angiotensina
16.
Physiol Behav ; 224: 113002, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525008

RESUMO

Accumulating evidence has revealed an intricate role for the renin-angiotensin system (RAS) in the progression or alleviation of stress-related disorders. Along these lines, the 'pro-stress' actions of angiotensin-II (Ang-II) are largely thought to be mediated by the angiotensin type-1a receptor (AT1aR). On the other hand, a counter regulatory limb of the RAS that depends on the conversion of Ang-II to angiotensin-(1-7) by angiotensin-converting enzyme 2 (ACE2) has been postulated to exert stress-dampening actions. We have previously found that augmenting ACE2 activity is potently anxiolytic and blunts stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis in male mice. Whether increasing ACE2 activity also relieves stress and anxiety in females has not yet been determined. Consequently, this series of experiments tests the hypothesis that augmenting ACE2 expression is anxiolytic and dampens the activity of the HPA axis in female mice. Using the Cre-LoxP system, we generated female mice that were homo-, heterozygous or wild-type for a mutated allele resulting in ubiquitous overexpression of ACE2. Next, we used qPCR to determine that levels of ACE2 mRNA isolated from central and peripheral tissues was dependent on genotype. That is, mice homo- and heterozygous for the ACE2 overexpression had significantly greater levels of ACE2 mRNA relative to littermate matched wild-type controls. Interestingly, anxiety-like behavior as determined by the elevated plus maze, light-dark box and novelty-induced hypophagia tests was also affected by genotype. Specifically, ACE2 overexpression significantly decreased anxiety-like behavior in paradigms dependent on approach-avoidance conflict and novelty; however, locomotor activity was similar amongst the genotypes. Final experiments measured plasma corticosterone to evaluate whether increasing ACE2 alters basal and/or stress-induced HPA axis activity. In contrast to what was previously found in males, increasing ACE2 expression had no effect on plasma corticosterone under basal conditions or subsequent to an acute restraint challenge. Collectively, these results suggest that increasing ACE2 expression potently elicits anxiolysis in female mice without altering HPA axis activity.


Assuntos
Sistema Hipotálamo-Hipofisário , Peptidil Dipeptidase A , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Animais , Ansiedade , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Renina-Angiotensina/genética
17.
Hypertension ; 76(1): 206-216, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418496

RESUMO

Therapeutic advances for pulmonary hypertension (PH) have been incremental because of the focus on the pulmonary vasculature in PH pathology. Here, we evaluate the concept that PH is, rather, a systemic disorder involving interplay among multiorgan systems, including brain, gut, and lungs. Therefore, the objective of this study was to evaluate the hypothesis that PH is associated with a dysfunctional brain-gut-lung axis and that global overexpression of ACE2 (angiotensin-converting enzyme 2) rebalances this axis and protects against PH. ACE2 knockin and wild-type (WT; C57BL/6) mice were subjected to chronic hypoxia (10% FIO2) or room air for 4 weeks. Cardiopulmonary hemodynamics, histology, immunohistochemistry, and fecal 16S rRNA microbial gene analyses were evaluated. Hypoxia significantly increased right ventricular systolic pressure, sympathetic activity as well as the number and activation of microglia in the paraventricular nucleus of the hypothalamus in WT mice. This was associated with a significant increase in muscularis layer thickening and decreases in both villi length and goblet cells and altered gut microbiota. Global overexpression of ACE2 prevented changes in hypoxia-induced pulmonary and gut pathophysiology and established distinct microbial communities from WT hypoxia mice. Furthermore, WT mice subjected to fecal matter transfer from ACE2 knockin mice were resistant to hypoxia-induced PH compared with their controls receiving WT fecal matter transfer. These observations demonstrate that ACE2 ameliorates these hypoxia-induced pathologies and attenuates PH. The data implicate dysfunctional brain-gut-lung communication in PH and provide novel avenues for therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , Disbiose/etiologia , Microbioma Gastrointestinal , Hipertensão Pulmonar/microbiologia , Hipóxia/complicações , Enzima de Conversão de Angiotensina 2/genética , Animais , Disbiose/enzimologia , Disbiose/microbiologia , Disbiose/terapia , Transplante de Microbiota Fecal , Técnicas de Introdução de Genes , Hemodinâmica , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/microbiologia , Inflamação , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Sistema Nervoso Simpático/fisiopatologia
18.
Neuropharmacology ; 171: 108091, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304701

RESUMO

Oxytocin (OT) has gained considerable interest in recent years as a potential treatment for alcoholism and other substance use disorders. Evidence continues to mount that OT administered either centrally, peripherally or intranasally can decrease ethanol intake in both humans and animal models. The potential mechanisms for the ability of OT to decrease ethanol reward, and importantly, cue- and stress-induced ethanol relapse, are explored by reviewing the specific neuronal circuits involved in mediating these actions and their sensitivity to OT. In addition to dopamine neurons that project from ventral tegmental area (VTA) to nucleus accumbens (NAc) to signal positively reinforcing events, OT receptors (OxTR) are also expressed by dopamine neurons that project from VTA to brain regions that can convey aversive properties of a stimulus. Moreover, OxTR are expressed by non-dopaminergic neurons in the VTA, such as GABA and glutamate neurons, which can both modulate the activity of dopamine VTA neurons locally (in opposite directions) or can project to other brain regions, including the NAc, where it can alter either positive reinforcement or aversion caused by ethanol. The ability of OT to regulate limbic circuitry and the hypothalamic-pituitary-adrenal axis is discussed as a potential mechanism for the ability of OT to inhibit ethanol-induced negative reinforcement. Together, understanding the diversity and complexity of OT regulation of ethanol reward may contribute to more effective use of OT as pharmacotherapy for alcohol use disorder. This article is part of the special issue on Neuropeptides.


Assuntos
Alcoolismo/tratamento farmacológico , Rede Nervosa/efeitos dos fármacos , Ocitocina/uso terapêutico , Alcoolismo/fisiopatologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Rede Nervosa/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
19.
J Neuroendocrinol ; 32(3): e12839, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32133707

RESUMO

Significant prior evidence indicates that centrally acting oxytocin robustly modulates stress responsiveness and anxiety-like behaviour, although the neural mechanisms behind these effects are not entirely understood. A plausible neural basis for oxytocin-mediated stress reduction is via inhibition of corticotrophin-releasing hormone (CRH) neurones in the paraventricular nucleus of the hypothalamus (PVN) that regulate activation of the hypothalamic-pituitary-adrenal axis. Previously, we have shown that, following s.c. injection of 2.0 mol L-1 NaCl, oxytocin synthesising neurones are activated in the rat PVN, an oxytocin receptor (Oxtr)-dependent inhibitory tone develops on a subset of parvocellular neurones and stress-mediated increases in plasma corticosterone levels are blunted. In the present study, we utilised transgenic male CRH-reporter mice to selectively target PVN CRH neurones for whole-cell recordings. These experiments reveal that acute salt loading produces tonic inhibition of PVN CRH neurones through a mechanism that is largely independent of synaptic activity. Further studies reveal that a subset of CRH neurones within the PVN synthesise mRNA for Oxtr(s). Salt induced Oxtr-dependent inhibitory tone was eliminated in individual PVN CRH neurones filled with GDP-ß-S. Additional electrophysiological studies suggest that reduced excitability of PVN CRH neurones in salt-loaded animals is associated with increased activation of inwardly rectifying potassium channels. Nevertheless, substantial effort to recapitulate the core effects of salt loading by activating Oxtr(s) with an exogenous agonist produced mixed results. Collectively, these results enhance our understanding of how oxytocin receptor-mediated signalling modulates the function of CRH neurones in the PVN.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipernatremia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
20.
Hypertens Res ; 43(4): 281-295, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31853042

RESUMO

Brain angiotensin-II (Ang-II) type-1 receptors (AT1Rs), which exert profound effects on normal cardiovascular, fluid, and metabolic homeostasis, are overactivated in and contribute to chronic sympathoexcitation and hypertension. Accumulating evidence indicates that the activation of Ang-II type-2 receptors (AT2Rs) in the brain exerts effects that are opposite to those of AT1Rs, lowering blood pressure, and reducing hypertension. Thus, it would be interesting to understand the relative cellular localization of AT1R and AT2R in the brain under normal conditions and whether this localization changes during hypertension. Here, we developed a novel AT1aR-tdTomato reporter mouse strain in which the location of brain AT1aR was largely consistent with that determined in the previous studies. This AT1aR-tdTomato reporter mouse strain was crossed with our previously described AT2R-eGFP reporter mouse strain to yield a novel dual AT1aR/AT2R reporter mouse strain, which allowed us to determine that AT1aR and AT2R are primarily localized to different populations of neurons in brain regions controlling cardiovascular, fluid, and metabolic homeostasis. Using the individual AT1aR-tdTomato reporter mice, we also demonstrated that during hypertension induced by the administration of deoxycorticosterone acetate-salt, there was no shift in the expression of AT1aR from neurons to microglia or astrocytes in the paraventricular nucleus, a brain area important for sympathetic regulation. Using AT2R-eGFP reporter mice under similar hypertensive conditions, we demonstrated that the same was true of AT2R expression in the nucleus of the solitary tract (NTS), an area critical for baroreflex control. Collectively, these findings provided a novel means to assess the colocalization of AT1R and AT2R in the brain and a novel view of their cellular localization in hypertension.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Hipertensão/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Animais , Pressão Sanguínea/fisiologia , Camundongos , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...